Combined Science Paper 2 HIGHER

<u>Biology</u>

These specification points will be the **major focus** of this paper.

Spec point	Concepts	CGP revision guide pages	Bitesize	YouTube
4.5.3 Hormonal Control in Humans	 -definition of 'hormone' function of the tissues and organs of the endocrine system -identifying position of glands, and the hormones secreted from them -hormones involved in control of blood glucose concentration -Type 1 and Type 2 diabetes -explain how glucagon interacts with insulin in a negative feedback cycle to control blood glucose (sugar) levels in the body. -describe the roles of hormones in human reproduction, including the menstrual cycle -explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle -explain the roles of hormones in modern reproductive technologies to treat infertility. -explain the roles of thyroxine and adrenaline in the body. Thyroxine levels are controlled by negative feedback 	110 112-115 120	https://www.bbc.co.uk/bit esize/guides/zq4mk2p/revi sion/1	https://www.youtube.com/ watch?v=c6olhi88KZshttps://www.youtube.com/ watch?v=77oyUdNZ054GCSE Biology Hormones in human reproduction (AQA 9-1) – YouTubeGCSE Science Revision Biology "The Menstrual Cycle" – YouTubeGCSE Science Revision Biology "Hormones to Treat Infertility" – YouTubeGCSE Science Revision Biology "Negative Feedback" – YouTube

4.7.2 Organisation of an ecosystem	-interpret food chains and webs -identify producers, consumers, predators and prey from food chains and webs -describe the carbon and water cycles	157-160	https://www.bbc.co.uk/bit esize/guides/zqskv9q/revisi on/1	https://www.youtube.com/ watch?v=dRFQ8rZCK6Q https://www.youtube.com/ watch?v=urzpnjwazV0
4.7.3 Biodiversity and the effect of human interaction on an ecosystem	-Define biodiversity -Describe ways in which pollution can occur, and the impacts of this pollution on biodiversity -Describe ways to manage this pollution -describe some of the biological consequences of global warming. -Describe the things that scientists have introduced to reduce the negative effects of humans on ecosystems and biodiversity.	163-166 169-170	Biodiversity and interdependance - Biodiversity and the effect of human interaction on ecosystems - AQA - GCSE Combined Science Revision - AQA Trilogy - BBC Bitesize	GCSE Science Revision Biology "Biodiversity" – YouTube GCSE Science Revision Biology "Maintaining Biodiversity" – YouTube GCSE Biology - How Human Waste Reduces Biodiversity - Explained #63 – YouTube GCSE Science Revision Biology "Global Warming" - YouTube
Required Practical 7: measure the population size of a common species in a habitat. Use sampling techniques to investigate the effect of a factor on the distribution of this species	-Using transects and quadrats are used by ecologists to determine the distribution and abundance of species in an ecosystem. -Understand the terms mean, mode and median -Calculate arithmetic means	157-158	https://www.bbc.co.uk/bit esize/guides/zqskv9q/revisi on/3	https://www.youtube.com/ watch?v=2MW6nwf80XM https://www.youtube.com/ watch?v=RhMOCxXcDrQ https://www.youtube.com/ watch?v=yLHz2Ea10Mg&t= 2s

These specification points will **not be assessed** on this paper.

Spec point	CGP Revision Guide Pages
4.5.2 The human nervous system	105
4.5.3.4 Contraception	117
4.6.1.1 Sexual and asexual reproduction 4.6.1.3 DNA and the genome	122-124
 4.6.1.4 Genetic Inheritance 4.6.1.5 Inherited Disorders 4.6.1.6 Sex Determination 4.6.2 Variation and Evolution 4.6.3. The development of understanding of genetics and evolution 	126-150
4.7.1.4 Adaptations	155
4.7.3.3 Land Use 4.7.3.4 Deforestation	167

These areas **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision.

Content	CGP Revision Guide Pages
Homeostasis	104
Meiosis	125
Classification	148
Competition and Abiotic/Biotic Factors	151-153

<u>Chemistry</u>

These specification points will be the **major focus** of this paper.

Spec point	Concepts	CGP revision guide pages	Bitesize	YouTube
5.6.1 Rate of Reaction	-Calculating the rate of a reaction -Calculate the gradient of a tangent to the curve on these graphs as a measure of rate of reaction at a specific time. -Describe collision theory -Define activation energy -Describe and explain the factors that increase the rate of reaction -Describe and explain the effect of catalysts on rate of reaction	253-260	https://www.bbc.co.uk/bit esize/guides/zpkp7p3/revis ion/1	https://www.youtube.com/ watch?v=UkrBJ6-uGFA https://www.youtube.com/ watch?v=GCR5xeduq2o https://www.youtube.com/ watch?v=-4HXaUBbv04 https://www.youtube.com/ watch?v=hel8fQjxcO8
Required Practical 11: investigate how concentration affects the rates of reaction by a method involving measuring the volume of a gas produced/change in colour	-identify independent, dependent and control variables -describe how to measure the dependent variable -analyse results and draw conclusions from graphed data -calculate rate of reaction from data	258-259	https://www.bbc.co.uk/bit esize/guides/zpkp7p3/revis ion/6	https://www.youtube.com/ watch?v=N5p06i9ilmo https://www.youtube.com/ watch?v=Gl6LVI7oAIU
5.6.2 Reversible reactions and dynamic equilibrium	 -Identify and give examples of reversible reactions -Apply the conservation of energy to reversible reactions -Define dynamic equilibrium -Describe Le <u>Chatelier's</u> principle -Describe and explain the effect of changing the following conditions on equilibrium; concentration, temperature, pressure 	263-265	https://www.bbc.co.uk/bit esize/guides/z32bpbk/revis ion/1	https://www.youtube.com/ watch?v=66qcNNJFy6EGCSE Science Revision Chemistry "Concentration and Reversible Reactions" - YouTubeGCSE Science Revision Chemistry "Pressure and Reversible Reactions" - YouTubeGCSE Science Revision Chemistry "Pressure and Reversible Reactions" - YouTubeGCSE Science Revision Chemistry "Temperature and reversible reactions" - YouTubeGCSE Science Revision Chemistry "Temperature and reversible reactions" - YouTubeGCSE Chemistry - Le Chatelier's Principle #42 (Higher Tier) - YouTube

Spec point	Concepts	CGP revision guide pages	Bitesize	YouTube
5.7.1 C arbon compounds as fuels and feedstock	-describe crude oil as a mixture of different length hydrocarbons -define the term hydrocarbon -identify the first 4 alkanes from their chemical formula and name them -Describe the trend in properties as hydrocarbon chain length increases -Describe and explain the process of fractional distillation -describe the process of cracking -describe the use of alkenes	267-270	https://www.bbc.co.uk/bit esize/guides/zxd4y4j/revisi on/1	https://www.youtube.com/ watch?v=CX2IYWggEBc https://www.youtube.com/ watch?v=3I7yCkSXPos https://www.youtube.com/ watch?v=7AWwjKbRa_o
5.8.1 Purity, formulations and chromatography	-Define the term pure substance in chemistry -Use melting and boiling point data to identify pure and impure substances -Define the term formulation and give examples	273 275	<u>https://www.bbc.co.uk/bit</u> <u>esize/guides/zp2wrwx/revi</u> <u>sion/1</u>	<u>https://www.youtube.com/</u> <u>watch?v=3oJxWwcnfJY</u>
Required Practical 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances.	-Describe the properties of the mixtures that chromatography can be used to separate -Describe and explain the experimental process of chromatography -Explain how substances are separated using chromatography -Interpret chromatograms + -Calculate Rf values	275	https://www.bbc.co.uk/bit esize/guides/zp2wrwx/revi sion/3	https://www.youtube.com/ watch?v=TdJ57SQ6GAQ https://www.youtube.com/ watch?v=pnTGNAfu6GE
5.9.1 The composition and evolution of the Earth's Atmosphere	-describe the composition of the current atmosphere -describe the composition of the early atmosphere and explain theories of how the early atmosphere formed -explain how the early atmosphere changed to that of the present atmosphere	278	https://www.bbc.co.uk/bit esize/guides/z9pk3k7/revisi on/1	https://www.youtube.com/ watch?v=t1Z3GlNldLA https://www.youtube.com/ watch?v=l0h -3M0Pso
5.10.1 Using the Earth's resources and obtaining potable water	 -Describe the renewable and non-renewable resources that we get form the Earth and its atmosphere -Define the term potable water -Describe how potable water can be produced. -Describe the differences in the treatment of waste water, salt water and ground water -Describe and evaluate alternative methods of extracting metals e.g. phytomining and bioleaching 	286 292-294	https://www.bbc.co.uk/bit esize/guides/zswfxfr/revisi on/1 https://www.bbc.co.uk/bit esize/guides/zg6cfcw/revisi on/1 Biological methods of metal extraction - Higher - Ways of reducing the use of resources - AQA - GCSE Combined Science Revision - AQA Trilogy - BBC Bitesize	https://www.youtube.com/ watch?v=-XczTGavTZU https://www.youtube.com/ watch?v=n7pYRQs20bl https://www.youtube.com/ watch?v=b5RVPauf4oM

This specification points will **not be assessed** on this paper.

Spec point	CGP Revision Guide Pages
5.8.2 Identification of common gases	274

These areas **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision.

Content	CGP Revision Guide Pages
Climate Change and Greenhouse Gases	280
Carbon footprint Air Pollution	282-284
LCA and Recycling	287-289

<u>Physics</u>

	Higher paper 2	
	MAJOR FOCUS	Revision
		Pages
6.5.1 Forces and their interactions	 Scalar quantities – magnitude only (mass, time, temperature, speed, distance) Vector quantities – magnitude and direction (weight, force, velocity, acceleration, displacement) Contact forces – objects physically touching – friction, drag, tension, normal contact force Non-contact forces – not touching – magnetism, gravity, electrostatic force Mass is constant, weight is the force acting on a mass due to gravity, with weight and mass being directly proportional Weight = mass x gravitational field strength (W = m x g) Multiple forces acting on an object can be replaced by a single, resultant force Draw free body diagrams (arrows to represent forces) A single force can be broken into two forces acting at right angles Multiple forces can be resolved into a single resultant force using scale vector diagrams 	347-349
6.5.4.1 Describing motion along a line	 Explain difference between distance (scalar) and displacement (vector) Explain difference between speed (scalar) and displacement (vector) Typical values (all can vary) Walking ≈ 1.5 m/s Running ≈ 3 m/s Cycling ≈ 6 m/s Sound in air ≈ 330 m/s For object moving at constant speed, distance can found using distance = speed x time (s = v x t) Motion in a circle involves constant speed but change in velocity due to change in direction (i.e. car going around roundabout) A journey in a straight line can be represent by a distance-time graph Speed can be found from the gradient of the distance-time graph If the object is accelerating (curved line) speed can be found by drawing a tangent Acceleration = change in velocity/time (a = ^{v-u}/_t) Acceleration can be calculated from gradient of velocity-time graph Distance travelled can be calculated by finding the area under a velocity-time graph – this can be found by counting squares or using geometry (Final velocity)² – (initial velocity)² = 2 x acceleration x distance (v² – u² = 2 x a x s) Falling objects accelerate due to force of gravity. Eventually weight = drag, resultant force = zero and object reaches terminal velocity 	356-360
6.5.4.2 Forces, accelerations and Newton's laws of motion 6.5.5 Momentum	 Newton's First Law: If the resultant force acting on an object is zero and: Object is stationary, it remains stationary Object is moving, it continues moving at same velocity Velocity only changes if force acts on object Tendency of objects to continue in state of rest or uniform motion called inertia Newton's Second Law: acceleration is proportional to resultant force Force = mass x acceleration (F = m x a) Inertial mass – measure of how difficult it is to change velocity of object (ratio of force over acceleration) Newton's Third Law – when two objects interact, they exert an equal and opposite force on each other Momentum = mass x velocity (p = m x v) 	362-363 Not in
	• Momentum before/after collision is always the same	guide

6.6.2	• All EM waves are transverse, travel at speed of light (3 x 10 ⁸ m/s) in vacuum or air	378-383
Electromagnetic	Grouped by wavelength/frequency	
waves	 In order, from long wavelength (low frequency) to short (high frequency) – radio, 	
	micro, infra-red, visible, UV, x-ray, gamma)	
	 Different materials absorb/reflect/transmit/refract EM waves in different ways 	
	 Refraction is due to waves slowing down/speeding up 	
	Refraction diagrams – less dense to more dense, moves towards normal – more dense	
	to less dense, moves away from the normal	
	Light slows down when it moves into more dense medium/speeds up when moves into	
	less dense	
	Radio waves – produced by oscillations in electronic circuits. When absorbed, cause AC	
	current with same frequency as wave.	
	 UV/X-ray/Gamma – can have hazardous effort on human tissue, depending on size of 	
	dose/type of radiation.	
	 Radiation measured in Sieverts – 1000 milli Sievert (1000 mSV) = 1 Sievert (1 Sv) 	
	• UV can cause skin to age prematurely and lead to skin cancer. X-ray/gamma both	
	ionising – can cause cancer/mutation of genes.	
	Uses of EM spectrum	
	 Radio – IV and radio Microwaya, catallita wi fi mahila phana haating food 	
	 Infra-red – electrical beaters, cooking food, IR cameras, remote controls 	
	\sim Visible light – telescones, fibre ontics	
	\sim 10 – energy efficient lamps sup-tan beds	
	• X-ray & Gamma – medical imaging and treatments	
	 Explain why each type of EM is suitable for its role 	
6.7.2 The motor	• When a current flows through a wire a magnetic field is produced around the wire.	388-389
effect	 Shaping the wire into a solenoid (coil) increases the strength of the magnetic field – the field incide the colongid is strong and uniform. 	
	 Adding an iron core increases the strength of the solenoid – this is an electromagnet 	
	 Adding an non-core increases the strength of the solenoid – this is an electromagnet. When a wire carrying an electromagnet is placed in a magnetic field the field and 	
	conductor exert a force on each other – this is the motor effect	
	• Fleming's left-hand rule show the direction of the force (thumb), field (first finger) and	
	current (middle finger)	
	 Force = magnetic flux density x current x length (F = B x I x I) 	
	 A coil carrying a current in a magnetic field will rotate – this is the basis of electric 	
Demuined Dreatical	motors	201 202
Required Practical	 Investigate now the amount of infra-red radiation absorbed of radiated by a surface depends on the pature of the surface 	381-382
	Low Tariff/Linked Topics	
6.5.2 Work done	Work is done on an object when a force causes it to move.	349
and energy	 Work done = force x distance (W = F x s) 	
transfer	 1 joule of work done = 1 Newton metre 	
	 Work done against friction causes a rise in temperature 	
6.6.1 Waves in	• Transverse – vibrate perpendicular (90°) to direction of energy transfer.	371-374
air, fluids and	Peaks/troughs. Water waves, all electromagnetic waves.	
solids	 Longitudinal – vibrate parallel to direction of energy transfer. 	
	Compressions/rarefactions. Needs particles (mechanical). Sound	
	waves/ultrasound.	
	 Amplitude – distance from rest point of wave to peak. 	
	 Wavelength – distance from peak to peak 	
	 Frequency – number of waves passing a point per second 	
	 Period = 1/frequency (T = 1/f) 	
	 Wave speed = frequency x wavelength (v = f x λ) 	

	NOT ON EXAM	
6.5.3 Forces and elasticity	 Give examples of forces involved in stretching and compressing Describe difference in elastic and inelastic deformation Extension of spring is directly proportional to force applied as long of limit of proportionality not exceeded Force = spring constant x extension (F = k x e) Force on spring does work, and elastic store of spring fills Elastic potential energy = 0.5 x spring constant x extension² (E_e = 0.5 x k x e²) 	351-353
6.5.4.3 Forces and Braking	 Stopping distance = thinking distance + braking distance Thinking distance - people naturally having different reaction times, tiredness, drugs, alcohol, distractions, speed of car Braking distance - adverse road conditions (rain/ice/snow) condition of brakes, condition of tyres, speed of car When brakes pressed, friction between brakes and wheel transfers energy from kinetic store to thermal store (car slows, brakes get hot) Large deceleration can lead to brakes overheating/loss of control of car 	368-369
6.7.1 Permanent and induced magnetism, magnetic forces and fields	 Magnets have north and south poles Poles are where magnets are strongest North & north/south & south repel North & south attract Permanent magnet – has own magnetic field Induced magnet – becomes a magnet when placed in magnetic field. Always causes force of attraction. Loses magnetism quickly when removed from magnetic field Region around magnet where force acts is called magnetic field – strength of field depends on distance from magnet Direction of field line is north to south 	386-387